2.7 異方性媒質中の電磁波の伝搬(2)

〜途中計算〜
途中計算は、こちら。 \[ \left( 1 - \frac{r^2}{{n_x}^2} + \frac{{s_x}^2 r^2}{{n_x}^2} \right) \left( 1 - \frac{r^2}{{n_y}^2} + \frac{{s_y}^2 r^2}{{n_y}^2} \right) \left( 1 - \frac{r^2}{{n_z}^2} + \frac{{s_z}^2 r^2}{{n_z}^2} \right) + \frac{ {s_x}^2 {s_y}^2 {s_z}^2 r^6 }{ {n_x}^2 {n_y}^2 {n_z}^2 } + \frac{ {s_x}^2 {s_y}^2 {s_z}^2 r^6 }{ {n_x}^2 {n_y}^2 {n_z}^2 } \\ \quad - \left( 1 - \frac{r^2}{{n_x}^2} + \frac{{s_x}^2 r^2}{{n_x}^2} \right) \frac{{s_y}^2 {s_z}^2 r^4}{{n_y}^2{n_z}^2} - \left( 1 - \frac{r^2}{{n_y}^2} + \frac{{s_y}^2 r^2}{{n_y}^2} \right) \frac{{s_z}^2 {s_x}^2 r^4}{{n_z}^2{n_x}^2} - \left( 1 - \frac{r^2}{{n_z}^2} + \frac{{s_z}^2 r^2}{{n_z}^2} \right) \frac{{s_x}^2 {s_y}^2 r^4}{{n_x}^2{n_y}^2} \\ = \left( 1 - \frac{r^2}{{n_x}^2} \right) \left( 1 - \frac{r^2}{{n_y}^2} \right) \left( 1 - \frac{r^2}{{n_z}^2} \right) + \left( 1 - \frac{r^2}{{n_x}^2} \right) \left( 1 - \frac{r^2}{{n_y}^2} \right) \frac{{s_z}^2 r^2}{{n_z}^2} + \left( 1 - \frac{r^2}{{n_y}^2} \right) \left( 1 - \frac{r^2}{{n_z}^2} \right) \frac{{s_x}^2 r^2}{{n_x}^2} + \left( 1 - \frac{r^2}{{n_z}^2} \right) \left( 1 - \frac{r^2}{{n_x}^2} \right) \frac{{s_y}^2 r^2}{{n_y}^2} \\ \quad + \left( 1 - \frac{r^2}{{n_x}^2} \right) \frac{{s_y}^2{s_z}^2 r^4}{{n_y}^2{n_z}^2} + \left( 1 - \frac{r^2}{{n_y}^2} \right) \frac{{s_z}^2{s_x}^2 r^4}{{n_z}^2{n_x}^2} + \left( 1 - \frac{r^2}{{n_z}^2} \right) \frac{{s_x}^2{s_y}^2 r^4}{{n_x}^2{n_y}^2} + \frac{{s_x}^2{s_y}^2{s_z}^2 r^6}{{n_x}^2{n_y}^2{n_z}^2} + \frac{{s_x}^2{s_y}^2{s_z}^2 r^6}{{n_x}^2{n_y}^2{n_z}^2} + \frac{{s_x}^2{s_y}^2{s_z}^2 r^6}{{n_x}^2{n_y}^2{n_z}^2} \\ \quad - \left( 1 - \frac{r^2}{{n_x}^2} \right) \frac{{s_y}^2{s_z}^2 r^4}{{n_y}^2{n_z}^2} - \left( 1 - \frac{r^2}{{n_y}^2} \right) \frac{{s_z}^2{s_x}^2 r^4}{{n_z}^2{n_x}^2} - \left( 1 - \frac{r^2}{{n_z}^2} \right) \frac{{s_x}^2{s_y}^2 r^4}{{n_x}^2{n_y}^2} - \frac{{s_x}^2{s_y}^2{s_z}^2 r^6}{{n_x}^2{n_y}^2{n_z}^2} - \frac{{s_x}^2{s_y}^2{s_z}^2 r^6}{{n_x}^2{n_y}^2{n_z}^2} - \frac{{s_x}^2{s_y}^2{s_z}^2 r^6}{{n_x}^2{n_y}^2{n_z}^2} \\ = \left( 1 - \frac{r^2}{{n_x}^2} \right) \left( 1 - \frac{r^2}{{n_y}^2} \right) \left( 1 - \frac{r^2}{{n_z}^2} \right) + \left( 1 - \frac{r^2}{{n_x}^2} \right) \left( 1 - \frac{r^2}{{n_y}^2} \right) \frac{{s_z}^2 r^2}{{n_z}^2} + \left( 1 - \frac{r^2}{{n_y}^2} \right) \left( 1 - \frac{r^2}{{n_z}^2} \right) \frac{{s_x}^2 r^2}{{n_x}^2} + \left( 1 - \frac{r^2}{{n_z}^2} \right) \left( 1 - \frac{r^2}{{n_x}^2} \right) \frac{{s_y}^2 r^2}{{n_y}^2} \\ = 1 - \frac{r^2}{{n_x}^2} - \frac{r^2}{{n_y}^2} - \frac{r^2}{{n_z}^2} + \frac{r^4}{{n_x}^2{n_y}^2} + \frac{r^4}{{n_y}^2{n_z}^2} + \frac{r^4}{{n_z}^2{n_x}^2} - \frac{r^6}{{n_x}^2{n_y}^2{n_z}^2} \\ \quad + \frac{{s_z}^2 r^2}{{n_z}^2} - \frac{{s_z}^2 r^4}{{n_y}^2{n_z}^2} - \frac{{s_z}^2 r^4}{{n_z}^2{n_x}^2} + \frac{{s_z}^2 r^6}{{n_x}^2{n_y}^2{n_z}^2} + \frac{{s_x}^2 r^2}{{n_x}^2} - \frac{{s_x}^2 r^4}{{n_z}^2{n_x}^2} - \frac{{s_x}^2 r^4}{{n_x}^2{n_y}^2} + \frac{{s_x}^2 r^6}{{n_y}^2{n_z}^2{n_x}^2} + \frac{{s_y}^2 r^2}{{n_y}^2} - \frac{{s_y}^2 r^4}{{n_x}^2{n_y}^2} - \frac{{s_y}^2 r^4}{{n_y}^2{n_z}^2} + \frac{{s_y}^2 r^6}{{n_z}^2{n_x}^2{n_y}^2} \\ = \big[ \left( {s_x}^2 +{s_y}^2 +{s_z}^2 \right) {n_x}^2{n_y}^2{n_z}^2 +\left( {s_z}^2 - 1 \right) r^2 {n_x}^2{n_y}^2 +\left( {s_x}^2 - 1 \right) r^2 {n_y}^2{n_z}^2 +\left( {s_y}^2 - 1 \right) r^2 {n_z}^2{n_x}^2 - r^6 \\ \quad + \left( 1 - {s_y}^2 - {s_z}^2 \right) r^4{n_x}^2 + \left( 1 - {s_z}^2 - {s_x}^2 \right) r^4{n_y}^2 + \left( 1 - {s_x}^2 - {s_y}^2 \right) r^4{n_z}^2 +\left( {s_z}^2 +{s_x}^2 +{s_y}^2 \right) r^6 \big] \frac{1}{{n_x}^2{n_y}^2{n_z}^2} \\ = \big[ {s_x}^2{n_x}^2{n_y}^2{n_z}^2 +{s_y}^2{n_x}^2{n_y}^2{n_z}^2 +{s_z}^2{n_x}^2{n_y}^2{n_z}^2 - \left( {s_x}^2 + {s_y}^2 \right) r^2{n_x}^2{n_y}^2 - \left( {s_y}^2 + {s_z}^2 \right) r^2{n_y}^2{n_z}^2 - \left( {s_z}^2 + {s_x}^2 \right) r^2{n_z}^2{n_x}^2-r^6 \\ \quad +{s_x}^2 r^4{n_x}^2 +{s_y}^2 r^4{n_y}^2 +{s_z}^2 r^4{n_z}^2 + r^6 \big] \frac{1}{{n_x}^2{n_y}^2{n_z}^2} \\ = \big[ \left( {n_y}^2{n_z}^2 - n^2{n_z}^2 - r^2{n_y}^2 + r^4 \right) {s_x}^2{n_x}^2 +\left( {n_z}^2{n_x}^2 - n^2{n_x}^2 - r^2{n_z}^2 + r^4 \right) {s_y}^2{n_y}^2 +\left( {n_x}^2{n_y}^2 - n^2{n_y}^2 - r^2{n_x}^2 + r^4 \right) {s_z}^2{n_z}^2 \big] \frac{1}{{n_x}^2{n_y}^2{n_z}^2} \\ = \big[ \left( {n_y}^2 - r^2 \right) \left( {n_z}^2 - r^2 \right) {s_x}^2{n_x}^2 +\left( {n_z}^2 - r^2 \right) \left( {n_x}^2 - r^2 \right) {s_y}^2{n_y}^2 +\left( {n_x}^2 - r^2 \right) \left( {n_y}^2 - r^2 \right) {s_z}^2{n_z}^2 \big] \frac{1}{{n_x}^2{n_y}^2{n_z}^2} \]


戻る